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Adrenal Cortical Lesions —

Sequence Hyperplasia-Adenoma-Carcinoma

» Malignancy criteria

» Contributions of gene expression

» Cellular heterogeneity

» Cell segregation and vascular supply

» Morphology and function



Malignancy Criteria

> Hough sytem

»Weiss system

»Van Slooten system

Histologic Criteria for Adrenocortical Proliferative Lesions

Value of Mitotic Figure Variability
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Adrenocortical Carcinoma




Criteria for the diagnosis of adrenal
cortical carcinoma

HHS WS VSS
Capsular invasion + + +
Venous invasion + + +
Sinusoidal invasion +
Broad fibrous bands +
Diffuse architecture + +

Necrosis + + +
Clear cells (<25%) +
Pleomorphism/high grade + + +
Mitoses + + +
Atypical mitoses +

ormal nucleoli +



Criteria for the diagnosis of adrenal
cortical carcinoma

HS W3S VSS

Weight of tumor (>100 g) +

Clinical features
Urinary 17-Ketogenic steroids +
Response to ACTH
Weight loss

+ +



Full serum steroid panel discriminates
ACC from other adrenal lesions




Hough Histologic Score
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Gene Expression in ACPL
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Gene Expression in ACPL

Gene
Symbol  Unigene Title

Array data for TOP2A probe-sets
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ACC — Genomic Profiles

» Standardized molecular data

from 91 cases of adrenocortical L.
carcinoma v
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Clonality and DNA - Kinetic
Heterogeneity
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Original contribution

DNA and kinetic heterogeneity during the clonal evolution
of adrenocortical proliferative lesions

Alfredo Blanes MD, PhD?, Salvador J. Diaz-Cano MD, PhD, FRCPath®>*

“Department of Pathology, University Hospital of Malaga, 29010 Malaga, Spain
“Department of Pathology, King's College Hospital and King s College London School of Medicine, University of London,
Londen SE5 9RS, UK

Received 1 March 2006; revised 21 April 2006; sccepted 21 April 2006
Keywors: R Summary Monoclonal adrenocortical lesions show inverse correlation between proliferation and
b 1 c:' 2poplesis, with proliferation being the single most important criterion of malignsncy in adrenal Jesions.
YT "::L No study yet has evaluated the variability of proliferstion regsrding the clonal pettern =nd dingrosis in
‘.‘h“.mn° s | nodular hyperplasias (ACNHis), ical sdenomas (ACAs), and sdrenocortical
S e curcinomss (ACCs). We stadied 69 ACNHs, 64 ACAs, and 23 ACCs (Workd Health Onganization
K:“ﬁ"‘""s“"'"" criteria) from 156 fermales. Clonatity HUMARA test (from microdissected DNA samples), DNA content
o “; and proliferstion analyss (stide and fow cytometry), and mitotic figure (MF) counting'SD high-power

fields (HPFs) were pesformed in the same sreas. Heterogeneity was sssessed by S ercentage of
noaoctaplosd cells with DNA content exceeding Sc) and standard deviation of MF/HPF. Statistics
included analysis of variance/Student ¢ tests reganding the clonal patierns nd disgnosis. Polyclonal
palterns were abserved in 48 of 62 infarmative ACNHs and 7 of S6 informative ACAs, 2nd moneclonal
in 14 of 62 ACNIs, 49 of 6 ACAs, and 21 of 21 ACCs, with al! hyperdiploid lesions (14 ACCs und
13 ACAs) being menocional. The standand devistion of MEHPF progressively increased in ACNH-
ACA-ACC (0.048 + 0076, 0.110 + 0.097, 0.506 + 0.291, respectively: P = 0023), but did not
differentiste ACNHVACA. Only tetrupioid percentage (P = .0496) and ScER (P~ 0352) distinguished
polyclonal (3.64 + 220 and 0.14 + 0.15) from monociona] (7.25 + 7.52 und 1.00 + 1.74) benign

heterogeneously distributed mitotic figures and decressed diphoid percentage define ACCs.
© 2006 Elsevier Inc. All rights reserved.




DNA Ploidy HUMARA

SDyemer

Polyclonal benign

Cell Count

L .—ﬂ"ﬁ;j’fﬁ'&;v_ L aw %A’f 2 q

Distribution of DNA Mass

Monoclonal benign Monoclonal malignant




60

50

40

30

Polyclonal Benign Malignant
Monoclonal Monoclonal

Il +FC Apoptosis M - FC Apoptosis

Blanes, Diaz-Cano. Hum Pathol 2006;37(10):1295-303.




T statistically significant for Benign vs. Malignant
U statistically significant for Polyclonal vs. Monoclonal

(Benign lesions only)

0 20 40 60 80 100

= Benign Polyclonal B Benign Monoclonal B Malignant Monoclonal

Blanes, Diaz-Cano. Hum Pathol 2006;37(10):1295-303.



Extrapolated
Apoptosis Trend

— Proliferation - Apoptosis

Blanes, Diaz-Cano. Hum Pathol 2006;37(10):1295-303.




Prophase
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ACC - Molecular Genomic

»Whole Genome Doubling is a
hallmark of disease progression
»Increased TERT expression,
» Decreased telomere length, and
» Activation of cell-cycle programs.

Cancer Cell. 2016 May 9;29(5):723-36.
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Cell Kinetic and Clonal Cell Segregation

Awrericese foursal of Patholsgy, Vol 156, Moo §, Jasewary 20060
Coppnght © Americon Soctety for fneestigative Patbalogy

Clonality as Expression of Distinctive Cell Kinetics
Patterns in Nodular Hyperplasias and Adenomas of

the Adrenal Cortex

Salvader J. Diaz-Cano,*" Manuel de Miguel ¥
Alfredo Blanes ® Robert Tashjian,* Hugo Galera
and Hubert J. Walfe*

From e Detartment of Pathodogy® Tifts Dniversity— New
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Stertn; qnd the Department of Patbolng® Cweversity Hogooal! of
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gen receptor alleles in ACNHS and ACAs. (dAm J
Patbol 2000, 156311-319)

Meoplasms result from the progressive and convergent
selection of cell populations, but several tactors should
be considered. On ona hand, selection will detarming
tmor progression and cellular heterogeneity. On the
other hand, cellular salection must be related to call
kinetics procass.’® All genetic abnarmalities seen in tu
mars should be fixed on the transformed cell before
anding in a fully established malignancy. These geneatic
changes must be cooperative and rasistant to the callular
repair systems, and they must not activate the apoptosis
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Clonality as Expression of Distinctive Cell
Kinetics

» A distinctive correlation between
proliferation and apoptosis, direct for
ACNHs and inverse for ACASs, helps explain
clone selection.

» The inverse correlation of kinetic
parameters would provide the best selective
mechanism resulting in dominant clone
expansion (monoclonal) in ACAs, whereas
direct correlation gives a less selective
mechanism, allowing balanced expansion of
clones (polyclonal) in ACNHs



Clonality and Microvessels

Contribution of the Microvéssel Network to
the Clonal and Kinetic Profiles of Adrenal
Cortical Proliferative Lesions

SALVADOR J. DIAZ-CANO, MD, P-D, MANUEL DE MIGUEL P+D,
ALFRECO BLANES, MD, P+D, HUGO GALERA, MD, P-D,

AND HUBERT J. WOLFE, MD

Monoclonal adresocortical lesions have been chanactesized by
an invesse ] between proliferation aad apoptosis, and poly-
clonal kesioas show a direct cnrrﬂnlon Their relatiosship with the
vascudar pattern remains unknown in adrenocortical nodular hyper-
plasias (ACNHs), adenomas (ACAs), and carcinomas (ACCs). We
stadied 20 ACNHs, 25 ACAx, and 10 ACCs (World Health Onganiza-
thon cl-ulhunou eriteria) from 55 women, The analysis included
X i assay (on 4 samples), slide
and flow cytometry, and in st end labeling. Frdothelial celis were
stained with ant-CDS1, and the blood vessel area and density were
qaantified by image anafyis in the sme areas. Appropriste tisoe
cantrols were run in every case. Regression analyses between Kisedic
and vascular features were performed in both polycdiosal and mono-
doeal kesions, Folydonal patterns were obsesved i 14 of 18 infor-
mative ACNHs and § of 22 informative ACAs, and manodianal pas-
terny were seen in 4 of 15 ACNHs, 19 of 22 ACAs, and 9 of 9 ACCs,
A progressive increase i microvessel ares was observed in the AC-
NH-ACA-ACC but was 12y i between be.

aign and malignant lesions only (191,36 = 168,52 v 958,07 = 1279.85
ey ' < 0001). Ln addition, case stratification by clonal patterm
PRI i1, poby
benign lesions; 6% of pu))rlm\d 2ol 57% of monoclonal lesions hid
microvessel area =186 pm® (P« 0000008}, Monoclonal lesions
showed paraliel trends (bat with oppasite signs) for microvesse] area
and density in consp with prolif ard apoplasis, whereas
polycdonal lesions showed sverse trends. In conclusion, the Kaetic
advaniage of monuclonal adnenal cortical besions (increased prolif-
eration, d is ined by paralld i
i microvessel area and dvn-ﬂlv How Pavon $2:12352-1259, Copy-
sight © 2001 by W.B. Saunders Compasy

Key sowdi; adrenal cortex, noduhf hyperplasia, adesonsa, card-

noma, dnn-nn. P g i 1 desisity.
Birerd ACA, b ical ad i ACC, adr
eal carc ACNH, jcal nodular hyperplasing H&E,

hematoxylin and eosing PCR, palymerase chain reaction; HUMARA,
human androgen receptor geae; ISEL, b situ end labeling.
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Clonality and Cell Kinetics
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Cell Kinetics and Microvessels
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Clonality, Cell Kinetics, and
Microvessel Network

The microvessel profile of monoclonal adrenocortical
lesions is characterized by parallel increases in
microvessel area and density that correlate directly
with proliferation and inversely with apoptosis.

This distinctive microvessel pattern certainly helps
maintain the kinetic advantage (high proliferation and
low apoptosis), clonal cell selection, and eventually
cellular progression in those lesions



Adrenocortical Proliferative
Lesions

MORPHOLOGY AND FUNCTION
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Hypothalamic-pituitary-adrenal axis in ACTH-dependent
Cushing's syndrome

. Hypothalamus

R » Hypothalamus

. Hypothalamus
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A Pituitary B Ectopic ACTH Cc Ectopic CRH



Hypothalamic-pituitary-adrenal axis in ACTH-independent
Cushing's syndrome

Hypothalamus

Hypothalamus
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A Adrenal Tumor B Primary Nodular Hyperplasia



Benign Adrenal Cortical Proliferative
Lesions




Etiologic Diagnosis of Cushing

Test ACTH - ACTH - Primary
Pitvitary  Ectopic  adrenal

ACTH ) ™ \)

CRH stimulation T - .

test

HDDST 1 - (80%) ;

Metyrapone + -/ x -

stimulation test



Hyperaldosteronism
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Adrenal Medullary Lesions

» Pheochromocytomas in familial
syndromes

» Precursor lesions: Criteria, clonality,
and kinetic

»Malignancy and topographic
heterogeneity



Molecular Pathways in PCC
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Familial PCC
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Familial PCC -
Gene Expression

MEN2 VHL
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Familial PCC

ek Bilateral AMH Capsule’  Melastasis
adrenal
MEN 2 - + + - Very rare
VHL type2 - + - +, Vascular Rare
NF1 + <25% - = Rare
PGL-PCC + + - - 40%



NF1 Pheochromocytomas

2 3 4 5 6 7 8




VHL Pheochromocytomas
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VHL Syndrome




Familial PCC/PGL

PCC

PGl paras

Syndrome onilat PCC bilal® PG symp
MEN 2 RET + ++

VHL VHL + ++ +

NF1 NF1 + +

PGL4 SDHB + - ++
PGL3 SDHC

PGL1 SDHD = = - = =




PCC-PGL — Genetic Profiles

Pheochromocytomalparaganglioma tumors (173)

6 molecular profiling technologies
$ & clinical information

Diverse alteration mechanisms
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Cancer Cell. 2017 Feb 13;31(2):181-193.
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PCC-PGL — Molecular Pathways
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PCC-PGL — Molecular Genomic

» Comprehensive molecular
profiling of 173

pheochromocytoma and > Fqur mOIECUIarIV
paraganglioma tumors defined groups.
> Single drivers in tumors by »Kinase signaling subtype,
germli_ne mutatipn, somatic > Pseudohypoxia subtype,
mutation, or fusion gene

»\Wnt-altered subtype,
» MAML3 fusion gene and CSDE1 driven by MAML3 and
somatic mutation define a Wnt- CSDE1, and

altered subtype . .
» Cortical admixture

subtype.

» Prognostic markers of metastatic
disease include the MAML3
fusion gene



Multifocal or Multicentric?

SINGLE CLONE PROLIFERATION VERSUS NEOPLASTIC
FIELD CHANGE




Multifocal or Multicentric?

Familial tumor syndromes are good models due to:
> Synchronic and metachronic tumors

> Range of precursor lesions and established neoplasms are

frequent

Germline RET mutation (multiple endocrine neoplasia
2) has high penetrance and shows AMH-PCC and CCH-

MTC



Molecular Genetics in CCH & AMH
Patients
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Early Monoclonal Expansions in MEN-2A
Results
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Clonality Assays -

Cell and Tissue Comparisons
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Abstract

The relationship among histological Teatures, cell kinetics, and clonality has not been studied in
adrenal medullary hyperplasias (AMHs) and phacochromocytomas (PCCs). Thirty-four PCCs
(23 sporadic and 11 MEN-2A {multiple endocrine neoplasia type 2A)-related tumours, the latter
associated with AMH) from females were included in this study. Representative samples were
histelogically evaluated and microdissected to exiract DNA and evaluate the methylation pattern
of the androgen receptor alleles. At least two tissue samples (from the peripheral and internal
zones in each tumour) were analysed with appropriate tssue controls run in every case. The same
areas were selected for MIB-1 staining and in site end labelling (ISEL). Malignant PCCs were
defined by histologically confirmed distant metastases. All monoclonal AMH nodules from the
same patient showed the same X-chromosome inactivated. Six sporadic PCCs revealed liver
metastases {malignant PCC) and eight additional sporadic PCCs showed periadrenal infiliration
(locally invasive PCC). All informative PCCs were monoclonal, except for five locally invasive
PCCs and one benign PCC that revealed polyclonal patterns. Those cases also showed a
libroblastic stromal reaction with prominent blood vessels, focal smooth muscle differentiation,
amnd significantly higher MIB-1 (126.8 + 29.9) and ISEL (50.9 + 12.8) indices. Concordant X-
chromosome inactivation in nodules from a given patient suggests that MEMN-2A AMH is a
multifocal monoclonal condition. A subgroup of PCCs characterized by balanced methylation of
androgen receplor alleles, high cellular turnover, and stromal proliferation alse shows locally
invasive features. Copyright © 2000 John Wiley & Sons, Ll

Kevwords:  phacochromocyiomas; adrenal medullary hyperplasias; MEN-2A; X-chromosome
imactivation: proliferation; apoptosis; stromal reaction




Early Monoclonal Expansions in MEN
2A AMH

AMH is a multifocal monoclonal condition with
concordant methylation of androgen receptor alleles in
a given MEN-2A patient (RET point mutation at codon
634)

The multifocal nature and the concordant methylation
pattern suggest an early clonal expansion of precursors
at certain point during embryogenesis

Diaz-Cano et al. J Pathol 2000; 192: 221-228



Neoplastic or not?

DIVERGENT GENETIC EVOLUTION OF C-CELL AND
ADRENAL MEDULLARY HYPERPLASIAS IN MEN 2A
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Microsatellite Patterns in CCH
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Microsatellite Patterns in AMH
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Molecular Genetics in CCH & AMH
Conclusions

MEN 2A CCH and AMH are mainly monoclonal
lesions, but with divergent genetic evolution

> CCH shows early concordant TP53 and RB1 loci
abnormalities, supporting the neoplastic nature of this
lesion

> AMH is genetically heterogeneous and reveals low
incidence of microsatellite abnormalities and
discordant patterns, especially at NF1 locus. These
results are not consistent with a fully established
neoplasm
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Locally Invasive PCC. Clonality
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Diaz-Cano et al. J Pathol 2000; 192: 221-228



PCC - Histology and Clonality

Diaz-Cano et al. J Pathol 2000; 192: 221-228



Apoptosis in PCC

Diaz-Cano et al. J Pathol 2000; 192: 221-228



Clonality and Kinetics in PCC

Sporadic and MEN 2A PCC are mainly
monoclonal.

A subgroup of PCC characterized by
balanced methylation of androgen receptor
alleles, high cellular turnover, and stromal
proliferation also shows locally invasive
features.



Intratumor
Heterogenelty

DO GENETIC AND KINETIC CHANGES CORRELATE
WITH TOPOGRAPHY?




: Cancer 1993 Feb 1,71(3):820-4 Related Articles, Books
Paragangliomas. Static cytometric stndies of nuclear DNA patterns.

Gonzalez-Campora R, Diaz Cano S, Lerma-Puertas E, Rios Martin JJ, Salguero Villadiego M, Villar Rodriguez JL,
Bibbo M, Davidson HG.

Department of Pathology, Hospital Umniversitanio Virgen Macarena, University of Sewville, Spain

BACKGEOTUND. The biologic behawior of most paraganghomas cannot be predicted from their histologic appearance.
Fecently, cytometnic studies have found an association between an aggressve clinical behawvior and the presence of a
hyperdipload or tetrapload range m the DINA muclear content. METHOD. The authors have studied morphometnc (nuclear
area and nuclear form factor) and DINA densttometric (ntegral optical density and DINA ploidy) features of 23 cases of
paraganghoma by means of shde cytophotometry with the micreTICAS system (Untversity of Chicago, Chicage, IL). The
samples were selected from paraffin-embedded tissue, and representative sections were stamed with the Feulgen techmaue. The
differences between groups (cervical versus extracervical paraganglomas) were mwvestigated with the IMann-Whitney test and
Fisher discnmunant near function. EESULTS. The densttometric study showed aneuploid cell inesm 15 of 16 noncerncal
paraganghomas (with a DINA index within the tetraploid range), whereas 3 of 7 cervical paragangliomas were aneuploid and
only 1 case did not have not a diploid cell ine (with a DINA index within the pendiploid range). Iean ploidy (4.33 arbitrary
untts [AU] and 2.72 AT, respectively), nuclear area (5874 mucrons 2 and 32.08 microns 2, respectively), the mmor and major
DA mdices (1.09-1.24 and 1 .83-1.96, respectively), and DIVA content vanability (2c dewviation mdices [2cDI] of 8.62 and
1.88 AU, respectively) were ligher m noncervical paraganghomas. With Fisher near discnmmant function, mean nuclear area
(F=0.0008), 2cDI (P =0.0030), and the mimor DINA mdex of each cell prolferation were correlated with location. None of
the variables established statistically sigmificant differences i compansons of malignant and benign paraganghomas.
CONCLUSIONS. Karyometnic and DINA densitometric parameters have limited value i determining the prognosis of
paraganghomas, although they are correlated with tumeral location, which 15 still an mdicator i establishing the prognosis of
these neoplasms.

PMID: 8431563 [Fublded - mdexed for MEDLINE]



Intratumor
Heterogenelty

TOPOGRAPHIC DISTRIBUTION OF GENETIC
CHANGES

Genetic Heterogeneity by Topographic Compartments
in PCC Suggests a Convergent Cell Selection in the
Peripheral Area




Topographic Heterogeneity in PCC

Adrenal pheochromocytomas (PCC) are
histologically and biologically heterogeneous
neoplasms

PCCs present as sporadic or familial tumors, the
latter being associated with adrenal medullary
hyperplasias

Topographic heterogeneity is associated with
accumulation of genetic abnormalities in the
peripheral compartment



PCC - Malignancy Criteria?

Score if present
Feature (no. of points assigned)

Large nests or diffuse growth 2
(>10% of tumor volume)

Central (middle of large nests) 2
or confluent tumor necrosis LRSI 35 TR R O R S 4
(not degenerative change) 5 e & S a8 e S

High cellularity FENEL S oI ISP o

Cellular monotony o T s e A

Tumor cel spindling (even if focal)

Mitotic figures >3/10 HPF

Atypical mitotic figure(s)

Extension into adipose tissue

Vascular invasion

Capsular invasion

profound nuclear pleomorphism

Nuclear hyperchromasia

Total
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HPF = high-power field.
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PGL-PCC PGL-PCC
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Microsatellite Profile of PCC by Tumor

Compartment
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MSI and Defective DNA mismatch repair
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Microsatellite Profile of Sporadic
and MEN 2A PCC
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Topographic Heterogeneity and Behaviour
in PCC
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TSG Microsatellite Profile in PCC
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MMR Proteins in PCC Conclusions

Somatic topographic down-
regulation of mismatch repair
proteins contributes to the key
features of malignant PCC

o accumulation of microsatellite
lesions in the peripheral
compartment and

° intratumor heterogeneity.

Locally invasive PCC frequently
reveals single locus alterations,
especially involving NF1.
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Topographic Molecular Profile of Pheochromocytomas:
Role of Somatic Down-Regulation of Mismatch Repair

Alfredo Blanes, Juan J. Sanchez-Carrillo, and Salvador J. Diaz-Cano
Department of Pathology, University of Malaga School of Medicine (A.B., JJ.S.-C., SJ.D.-C.), Malage E29010, Spain; and

Department of Pathology, King's College Hospitel and King's College Sehool of Medicine (S.J.

United Kingdom

Context and Objective: Despite extensive molecular i vestifation
of adrenal pheoch ocytomas, no information is available o
molecular and mismatch repair (MMR) profiles by topographic
compartments.

Design and Setting: Microdissected Anmp.l‘r from the

.-C.), London SES SRS,
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